11 research outputs found

    Weak signals in Science and Technologies 2019: Analysis and recommendations: Technologies at a very early stage of development that could impact the future

    Get PDF
    JRC has developed a quantitative methodology to detect very early signs of emerging technologies, so called "weak signals of technology development". Using text mining and scientometric indicators, 256 of these weak signals have been identified on the basis of scientific literature and have been reported earlier this year in a JRC technical report. The purpose of this follow-up report is to provide a European perspective and to provide recommendations for policy makers. Europe shows vulnerabilities in 179 of these weak signals, further analysed in the present report.JRC.I.3-Text and Data Minin

    Weak signals in Science and Technologies: 2019 Report

    Get PDF
    JRC has developed a quantitative methodology to detect very early signs of emerging technologies, so called "weak signals of technology development". Using text mining and scientometrics indicators, 257 of these weak signals have been identified on the basis of scientific literature and are reported in the present report.JRC.I.3-Text and Data Minin

    Horizon Scanning for Nuclear Safety, Security & Safeguards Yearly Report - 2019

    Get PDF
    Horizon Scanning (HS) is a systematic outlook to detect early signs of potentially important developments. JRC.I.2 unit has created and, with the help of partner JRC Knowledge Management Units, has tested a methodology for a horizon scanning process at JRC level. Benefiting from this support and following this methodology, JRC.G.10 unit has collected throughout the year 2019 a number of ideas related to nuclear technology, later on filtered and clustered in the so called 'sense-making workshops'. This report presents the outcome of this exercise.JRC.G.10-Knowledge for Nuclear Security and Safet

    Cybersecurity, our digital anchor: A European perspective

    Get PDF
    The Report ‘Cybersecurity – Our Digital Anchor’ brings together research from different disciplinary fields of the Joint Research Centre (JRC), the European Commission's science and knowledge service. It provides multidimensional insights into the growth of cybersecurity over the last 40 years, identifying weaknesses in the current digital evolution and their impacts on European citizens and industry. The report also sets out the elements that potentially could be used to shape a brighter and more secure future for Europe’s digital society, taking into account the new cybersecurity challenges triggered by the COVID-19 crisis. According to some projections, cybercrime will cost the world EUR 5.5 trillion by the end of 2020, up from EUR 2.7 trillion in 2015, due in part to the exploitation of the COVID-19 pandemic by cyber criminals. This figure represents the largest transfer of economic wealth in history, more profitable than the global trade in all major illegal drugs combined, putting at risk incentives for innovation and investment. Furthermore, cyber threats have moved beyond cybercrime and have become a matter of national security. The report addresses relevant issues, including: - Critical infrastructures: today, digital technologies are at the heart of all our critical infrastructures. Hence, their cybersecurity is already – and will become increasingly – a matter of critical infrastructure protection (see the cases of Estonia and Ukraine). - Magnitude of impact: the number of citizens, organisations and businesses impacted simultaneously by a single attack can be huge. - Complexity and duration of attacks: attacks are becoming more and more complex, demonstrating attackers’ enhanced planning capabilities. Moreover, attacks are often only detected post-mortem . - Computational power: the spread of malware also able to infect mobile and Internet of Things (IoT) devices (as in the case of Mirai botnet), hugely increases the distributed computational power of the attacks (especially in the case of denial of services (DoS)). The same phenomenon makes the eradication of an attack much more difficult. - Societal aspects: cyber threats can have a potentially massive impact on society, up to the point of undermining the trust citizens have in digital services. As such services are intertwined with our daily life, any successful cybersecurity strategy must take into consideration the human and, more generally, societal aspects. This report shows how the evolution of cybersecurity has always been determined by a type of cause-and-effect trend: the rise in new digital technologies followed by the discovery of new vulnerabilities, for which new cybersecurity measures must be identified. However, the magnitude and impacts of today's cyber attacks are now so critical that the digital society must prepare itself before attacks happen. Cybersecurity resilience along with measures to deter attacks and new ways to avoid software vulnerabilities should be enhanced, developed and supported. The ‘leitmotiv’ of this report is the need for a paradigm shift in the way cybersecurity is designed and deployed, to make it more proactive and better linked to societal needs. Given that data flows and information are the lifeblood of today’s digital society, cybersecurity is essential for ensuring that digital services work safely and securely while simultaneously guaranteeing citizens’ privacy and data protection. Thus, cybersecurity is evolving from a technological ‘option’ to a societal must. From big data to hyperconnectivity, from edge computing to the IoT, to artificial intelligence (AI), quantum computing and blockchain technologies, the ‘nitty-gritty’ details of cybersecurity implementation will always remain field-specific due to specific sectoral constraints. This brings with it inherent risks of a digital society with heterogeneous and inconsistent levels of security. To counteract this, we argue for a coherent, cross-sectoral and cross-societal cybersecurity strategy which can be implemented across all layers of European society. This strategy should cover not only the technological aspects but also the societal dimensions of ‘behaving in a cyber-secure way’. Consequently, the report concludes by presenting a series of possible actions instrumental to building a European digital society secure by design.JRC.E.3-Cyber and Digital Citizens' Securit

    Etude physico-chimique de la cavitation acoustique

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Correlation between acoustic cavitation noise, bubble population, and sonochemistry

    No full text
    Quantitative studies of the correlation between sonochemical activity and acoustical noise spectra have been performed. The width of the second harmonic (fwhm2) of the acoustical signal in the frequency domain shows a sensitive dependence to the presence of small amounts (mM range) of an anionic surfactant in water. This sensitive dependence is also observed for other characteristics of the cavitation noise spectrum and in the sonochemical production of peroxides and correlates well with the sonoluminescence intensity observed by other researchers. Analysis of the experimental data shows that SDS probably modifies the coalescence phenomena.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Estimation of Ultrasound Induced Cavitation Bubble Temperatures in Aqueous Solutions

    No full text
    Mean acoustic cavitation bubble temperatures have been measured in a series of aqueous solutions containing C 1-C 5 aliphatic alcohols, at 355 kHz. The method relies on the distribution of hydrocarbon product yields produced from the recombination of methyl radicals generated on the thermal decomposition of the alcohols. The mean bubble temperature was found to decrease with increasing concentration of alcohol with the effect being more pronounced the higher the molecular weight (the lower the vapour pressure) of the alcohol. It is shown that the decrease in the temperatures measured correlates very well with an increase in the surface excess of the alcohol, similar to that previously reported for the quenching of sonoluminescence in aqueous solutions containing alcohols [J. Phys. Chem. B 101 (1997) 10845; J. Phys. Chem. B 103 (1999) 9231]. The measured temperatures ranged from 4600 ± 200 K at zero alcohol concentration to 2300 ± 200 K at 0.5 M t-butanol. The validity of the method is discussed and it is concluded that even though a number of assumptions need to be applied the results appear to indicate that the method gives an accurate measure of the mean bubble temperature. © 2004 Elsevier B.V. All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore